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1 Numbat
Numbat is an open-source MOOSE1 application for high-resolution simulations of buoyancy-
driven convection in porous media in both two and three dimensions.

Figure 1.1: Density-driven convective mixing in porous media

As a MOOSE app, it provides access to powerful MOOSE features such as adaptive mesh
refinement, hybrid parallelism, both continuous and discontinuous Galerkin methods, and much
more, all wrapped in a simple interface.
Numat solves the coupled convection-diffusion and Darcy equations with the Boussinesq
approximation using the finite element method.
Several formulations are available: from the full, dimensional governing equations, to a
dimensionless streamfunction formulation.

1.1 Development and testing
Numbat is developed on GitHub2 by CSIRO3. It follows the MOOSE continuous integration/-
continuous development philosphy, where changes are merged into the master branch of the
repository only after being tested succesfully against the automatic test suite provided by
Numbat.
Numbat is also part of the upstream MOOSE testing procedure, where all changes to MOOSE
are tested against Nubmat (as well as other MOOSE applications) to ensure no conflicts.

1.2 User manual version
Due to this development philosphy, Numbat does not feature the concept of software versions.
A consequence of this is that there are no version label applied to this user manual. This

1www.mooseframework.org
2www.github.com/cpgr/numbat
3www.csiro.au
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documentation is updated as new features and examples are added to the Numbat application.
The most up-to-date version of this document is always available on the Numbat website.
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2 Introduction
Convective mixing of fluids in porous media is a physical process that manifests in complex flow
patterns. In solutal convective mixing, the presence of a fluid component in the background
fluid results in a density contrast between fluid containing the solute and fluid without. This
density difference gives rise to a pressure gradient which drives motion.
Recently, a significant body of scientific literature has been concerned with density-driven
convective mixing in porous media due to its applicability to geological storage of carbon
dioxide, see Emami-Meybodi et al. (2015) for an extensive literature review. In the case
where CO2 is injected into a saline aquifer with a bounding cap rock, buoyancy drives vertical
migration of the mobile CO2 (CO2 in the supercritical gas phase), which then spreads beneath
the cap rock to form a thin, laterally extensive plume. In time, the gaseous CO2 begins to
dissolve into the local formation water, leading to a small increase in density of the saturated
brine at the top of the aquifer of approximately 1%. Diffusion of the dissolved CO2 allows
further dissolution, a process that leads to a gravitational instability whereby a denser fluid
lies atop a less dense one. After a sufficient period of time, vertical fluid motion is induced as
vertical acceleration overcomes diffusion, and CO2-rich water descends to the lower part of the
reservoir.
The process of convective mixing can significantly increase the rate of dissolution of CO2 in the
formation water and hence reduce the amount of mobile CO2. This can significantly reduce
the risk of leakage into overlying aquifers, increasing the security of storage.
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3 Background theory
3.1 Governing equations
Numbat implements the Boussinesq approximation to model density-driven convective mixing
in porous media. To reduce the computational burden, only a single fluid phase is considered.
This is a simplification to the actual physical process, where a gas phase may be present. This
simplification is often used in practice, see Emami-Meybodi et al. (2015) for a discussion
about the use of this simplifying assumption.

Note:
The more complicated two-phase model can be implemented using the porous_flow
module

The governing equations for density-driven flow in porous media are Darcy’s law

u = −K
µ

(
∇P − ρ(c)gk̂

)
, (3.1)

where u = (u, v, w) is the velocity vector, K is permeability, µ is the fluid viscosity, P is the
fluid pressure, ρ(c) is the fluid density as a function of solute concentration c, g is gravity, and
k̂ is the unit vector in the z direction.
The fluid velocity must also satisfy the continuity equation

∇ · u = 0, (3.2)

and the solute concentration is governed by the convection - diffusion equation

φ
∂c

∂t
+ u · ∇c = φD∇2c, (3.3)

where φ is the porosity, t is time and D is the diffusivity.
Darcy’s law and the convection-diffusion equations are coupled through the fluid density, which
is given by

ρ(c) = ρ0 + c

c0
∆ρ, (3.4)

where c0 is the equilibrium concentration, and ∆ρ is the increase in density of the fluid at
equilibrium concentration.
The boundary conditions are

w = 0, z = 0,−H,
∂c

∂z
= 0, z = −H,

c = c0, z = 0,

(3.5)
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which correspond to impermeable boundary conditions at the top and bottom boundaries, given
by z = 0 and z = −H, respectively, and a saturated condition at the top boundary.
Initially, there is no solute in the model

c = 0, t = 0. (3.6)

Numbat solves Eq. (3.1) and Eq. (3.3) with density coupled to concentration as in Eq. (3.4).

3.2 Dimensionless formulation
The governing equations can also be solved using a streamfunction formulation in 2D and a
vector potential formulation in 3D. As a result, we shall consider the two cases separately.
3.2.1 2D solution
If we consider an anisotropic model, with vertical and horizontal permeabilities given by kz and
kx, respectively, we can non-dimensionalise the governing equations in 2D following Ennis-King
& Paterson (2005) Defining the anisotropy ratio γ as

γ = kz
kx
, (3.7)

we scale the variables using

x = φµD

kz∆ρgγ1/2 x̂, z = φµD

kz∆ρg
ẑ, u = kz∆ρg

µγ1/2 û, w = kz∆ρg
µ

ŵ

t =
(

φµ

kz∆ρg

)2

t̂, c = c0ĉ, P = µφD

kz
P̂ ,

(3.8)

where x̂ refers to a dimensionless variable. The governing equations in dimensionless form are
then

u = −
(
∇P + ck̂

)
, (3.9)

u = 0, (3.10)

∂c

∂t
+ u · ∇c = γ

∂2c

∂x2 + ∂2c

∂z2 , (3.11)

where we have dropped the hat on the dimensionless variables for brevity.
The dimensionless boundary conditions are

w = 0, z = 0,−Ra,
∂c

∂z
= 0, z = −Ra,

c = 1, z = 0,

(3.12)
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where Ra is the Rayleigh number, defined as

Ra = kz∆ρgH
φµD

. (3.13)

In this form, the Rayleigh number only appears in the boundary conditions as the location of
the lower boundary. Therefore, Ra can be interpreted in this formalism as a dimensionless
model height, and can be varied in simulations by simply changing the height of the mesh.
Finally, the dimensionless initial condition is

c = 0, t = 0. (3.14)

For isotropic models, where kx = kz and hence γ = 1, we recover the dimensionless equations
given by Slim (2014)
The coupled governing equations must be solved numerically. To simplify the numerical analysis,
we introduce the streamfunction ψ(x, z, t) such that

u = −∂ψ
∂z
, w = ∂ψ

∂x
. (3.15)

This definition satisfies the continuity equation, Eq. (3.10), immediately.
The pressure P is removed from Eq. (3.9) by taking the curl of both sides and noting that
∇×∇P = 0 for any P , to give

∇2ψ = − ∂c
∂x
, (3.16)

where we have introduced the streamfunction ψ using Eq. (3.15).
The convection-diffusion equation, Eq. (3.11) becomes

∂c

∂t
− ∂ψ

∂z

∂c

∂x
+ ∂ψ

∂x

∂c

∂z
= γ

∂2c

∂x2 + ∂2c

∂z
. (3.17)

The boundary conditions become

∂ψ

∂x
= 0, z = 0,−Ra,

∂c

∂z
= 0, z = −Ra,

c = 1, z = 0,

(3.18)

while the initial condition is still given by Eq. (3.14).
In two dimensions, Numbat solves Eq. (3.16) and Eq. (3.17).
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3.2.2 3D solution
We now consider the case of a three-dimensional model. For simplicity, we consider the case
where all lateral permeabilities are equal (ky = kx). The governing equations for the 3D model
are identical to the 2D model. In dimensionless form, they are given by Eq. (3.9) to Eq. (3.11),
with boundary conditions given by Eq. (3.12), and initial condition given by Eq. (3.14).
To solve these governing equations in 3D, a different approach must be used as the streamfunc-
tion ψ is not defined in three dimensions. Instead, we define a vector potential Ψ = (ψx, ψy, ψz)
such that

u = ∇×Ψ. (3.19)

It is important to note that the vector potential is only known up to the addition of the gradient
of a scalar ζ as

∇× (Ψ +∇ζ) = ∇×Ψ ∀ζ, (3.20)

as ∇ × ∇ζ = 0 for any scalar ζ. This uncertainty is referred to as guage freedom, and is
common in electrodynamics. Taking the curl of Eq. (3.9) and substituting Eq. (3.19), we have

∇(∇ ·Ψ)−∇2Ψ =
(
−∂c
∂y
,
∂c

∂x
, 0
)
, (3.21)

where we have again used the fact that ∇×∇P = 0. If we choose ∇ ·Ψ = 0 to specify the
guage condition, this simplifies to

∇2Ψ =
(
∂c

∂y
,− ∂c

∂x
, 0
)
. (3.22)

As shown in E & Liu (1997) ∇ ·Ψ = 0 is satisfied throughout the domain if

ψx = ψy = 0, z = 0,−Ra,
∂ψz
∂z

= 0, z = 0,−Ra.
(3.23)

The governing equations are then

∇2Ψ =
(
∂c

∂y
,− ∂c

∂x
, 0
)
, (3.24)

∂c

∂t
+ u · ∇c = γ

(
∂2c

∂x2 + ∂2c

∂y2

)
+ ∂2c

∂z2 , (3.25)

where the continuity is satisfied automatically because ∇ · (∇×Ψ) = 0 for any Ψ.
Finally, it is straightforward to show that ψz = 0 in order to satisfy ∇2ψz = 0 and ∂ψz

∂z
= 0,

which means that the vector potential has only x and y components,
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Ψ = (ψx, ψy, 0), (3.26)

and therefore the fluid velocity u = (u, v, w) is

u =
(
−∂ψy
∂z

,
∂ψx
∂z

,
∂ψy
∂x
− ∂ψx

∂y

)
. (3.27)

Note that if there is no y dependence, Eq. (3.24) and (3.25) reduce to

∇2Ψ =
(

0,− ∂c
∂x
, 0
)
,

∂c

∂t
+ u · ∇c = γ

∂2c

∂x2 + ∂2c

∂z2 .

(3.28)

It is simple to show that ∇2ψx = 0 and ψx = 0 at z = 0,−Ra are only satisfied if ψx = 0
in the entire domain. In this case, the governing equations reduce to the two-dimensional
formulation, as expected.
In three dimensions, Numbat solves Eq. (3.24) and Eq. (3.25).
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4 Installation instructions
To install Numbat, follow these simple instructions.

4.1 Install MOOSE
Numbat is based on the MOOSE framework, so the first step is to install MOOSE. For detailed
installation instructions depending on your hardware, see www.mooseframework.com.

4.2 Clone Numbat
The next step is to clone the Numbat repository to your local machine.
In the following, it is assumed that MOOSE was installed to the directory ~/projects. If
MOOSE was installed to a different directory, the following instructions must be modified
accordingly.
To clone Numbat, use the following commands

cd ~/projects
git clone https://github.com/cpgr/numbat.git
cd numbat
git checkout master

4.3 Compile Numbat
Next, compile Numbat using

make -jn

where n is the number of processing cores on the computer. If everything has gone well,
Numbat should compile without error, producing a binary named numbat-opt.

4.4 Test Numbat
Finally, to test that the installation worked, the test suite can be run using

./run_tests -jn

where n is the number of processing cores on the computer. At this stage, all of the Numbat
tests should have run successfully, and you are ready to run more complicated simulations, see
the 2D examples and 3D examples for more details.

4.5 Keep up to date
New features and changes to Numbat may be implemented from time to time. To ensure
that Numbat continues to work without issue, you should make sure that you update your
installation periodically. This can be done using
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git fetch origin
git rebase origin/master
make -jn
./run_tests -jn

| 10



5 Implementation details
5.1 Rayleigh number
The Rayleigh number relates the relative importance of buoyancy forces to diffusive forces, and
is an important dimensionless number in convection. Slim (2014) showed that increasing the
Rayleigh number increases the number of flow regimes that the convective mixing process goes
through.
In the dimensionless model implemented in Numbat, the Rayleigh number appears in the
vertical position of the bottom boundary only (Slim, 2014) As a result, it is simple to vary
the Rayleigh number in the dimensionless model by simply extending the mesh in the vertical
direction.
In the dimensional model, the Rayleigh number may be varied by changing the various physical
parameters present, such as permeability, fluid viscosity etc.

5.2 Mesh considerations
The process of density-driven convective mixing in porous media begins initially as diffusive
mass transfer across the interface between a saturated fluid lying atop an unsaturated fluid.
After a sufficient time, the gravitational instability grows until small downwelling fingers of
saturated fluid descend into the unsaturated fluid. As time continues, these fingers grow and
merge, forming larger fingers. The temporal evolution of this process is shown in Figure 5.1.
The top image shows an initial diffusive profile. As time increases, fingers form, merge and
grow in a complex manner.

Figure 5.1: Evolution of convective dissolution (time increasing downwards). Note that the scale is
identical for all images.
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It is apparent from the temporal evolution above that the mesh requirements differ in different
regimes. Early on and near the top of the mesh, the elements must be sufficiently refined to
capture the initial formation of small fingers. Later on, and away from the top boundary, larger
elements may adequately capture the large downwelling fingers, and as such, the mesh may be
coarser in this region.
There are two ways that the user may deal with these disparate mesh requirements: use a
mesh that is more refined in the vicinity of the top boundary; or use adaptive mesh refinement.
Both of these are possible in Numbat.
Numbat provides a type of GeneratedMesh where the elements are biased towards the top
boundary, NumbatBiasedMesh, so that it is more refined in the vicinity of the constant
concentration boundary. This is particularly useful in two dimensions.
For three-dimensional models, an external meshing code may be used to generate an unstructured
mesh. MOOSE can read a number of mesh formats natively, see the MOOSE documentation
for details. One open-source option for generating unstructured meshes that MOOSE can read
is Gmsh. An example of a fully unstructured 3D mesh that is refined near the top boundary
and coarse near the bottom boundary is shown in Figure 5.2.

Figure 5.2: Example of unstructured mesh used in Numbat that was generated by Gmsh. Leftmost
image shows small section near the top with the concentration profile at an early time; middle image
shows top quarter of full mesh and concentration profile at an intermediate time; rightmost image
shows full mesh and concentration profile at late time.

5.3 Seeding the perturbation
Numerical simulations of solutal convection rely on seeding the gravitational instability to
initiate the convective mixing process. Numerical roundoff will eventually initiate convective
mixing, but can significantly overestimate the critical time for the onset of convection.
Instead, it is usual to seed the instability using a prescribed random perturbation in the model.
Several types of perturbation have been considered in the literature, see Emami-Meybodi et al.
(2015) for a detailed review.
In Numbat, an initial perturbation to seed the instability can be applied in several ways:

• In the dimensional formulation, a random noise sampled from a uniform distribution can
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be applied to the porosity;
• In the dimensionless streamfunction formulation, an initial perturbation to the diffusive

concentration profile can be applied;
• A random fluctuation to the concentration boundary condition can be applied.

The strength of the initial perturbation has been shown to affect the initial onset time
for convection, see Emami-Meybodi et al. (2015) for details. This should be taken into
consideration when modelling convective mixing in porous media.
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6 Input file syntax
The input file for a Numbat simulation is a simple, block-structured text file based on the input
files for a plain MOOSE input file.

6.1 Essential input
Details of the minimum input file requirements are given below.
6.1.1 Mesh
All simulations must feature a mesh. For the basic model with a rectangular mesh, the built-in
NumbatBiasedMesh can be used to create a suitable mesh. This is a type of GeneratedMesh
that provides the option to refine the mesh near one boundary. The size of the initial element
can be specified, after which the elements are progressively coarser, see NumbatBiasedMesh
for details. This can be extremely useful in simulations of density-driven convection, where it is
necessary to have a finer mesh in the vicinity of the boundary where the fingers form in order
to capture the process adequately. Away from this region, the fingers grow and merge, so that
a coarser mesh is sufficient to simulate them. Having a biased mesh such as that produced
by NumbatBiasedMesh can minimise the number of elements necessary, reducing the overall
computational demands.
In 2D, the input block looks like:
[Mesh]

type = NumbatBiasedMesh
dim = 2
ymax = 1.5
nx = 100
ny = 50
refined_edge = top
refined_resolution = 0.001

[]

In 3D, the Mesh block would look like:
[Mesh]

type = NumbatBiasedMesh
dim = 3
zmax = 1.5
nx = 20
ny = 20
nz = 500
refined_edge = front
refined_resolution = 0.001

[]

Note:
In contrast to the normal GeneratedMesh provided by MOOSE, NumbatBiasedMesh
renames the boundaries of the three dimensional mesh so that the boundaries top and
bottom are at the extrema of the z axis.
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6.1.2 Variables
The number and type of variables required depends on the chosen formulation. For the
dimensional formulation, two nonlinear variables must be provided, representing the fluid
pressure and solute concentration.
[ Variables ]

[./ concentration ]
initial_condition = 0
scaling = 1e6

[../]
[./ pressure ]

initial_condition = 1e6
[../]

[]

For the dimensionless streamfunction formulation, the nonlinear variables for a 2D simulations
are solute concentration and streamfunction:
[ Variables ]

[./ concentration ]
order = FIRST
family = LAGRANGE

[../]
[./ streamfunction ]

order = FIRST
family = LAGRANGE
initial_condition = 0.0

[../]
[]

In 3D, an additional streamfunction variable must also be added:
[ Variables ]

[./ concentration ]
order = FIRST
family = LAGRANGE
[./ InitialCondition ]

type = NumbatPerturbationIC
variable = concentration
amplitude = 0.1
seed = 1

[../]
[../]
[./ streamfunctionx ]

order = FIRST
family = LAGRANGE
initial_condition = 0.0

[../]
[./ streamfunctiony ]

order = FIRST
family = LAGRANGE
initial_condition = 0.0

[../]
[]
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6.1.3 Materials
For the dimensional formulation, several material and fluid properties are required: porosity,
permeability, fluid density and viscosity, and diffusivity. These can be added using the following
Numbat materials:
[ Materials ]

[./ porosity ]
type = NumbatPorosity
porosity = 0.3
noise = noise

[../]
[./ permeability ]

type = NumbatPermeability
permeability = '1e -11 0 0 0 1e -11 0 0 0 1e-11'

[../]
[./ diffusivity ]

type = NumbatDiffusivity
diffusivity = 2e-9

[../]
[./ density ]

type = NumbatDensity
concentration = concentration
zero_density = 995
delta_density = 10.5
saturated_concentration = 0.049306

[../]
[./ viscosity ]

type = NumbatViscosity
viscosity = 6e-4

[../]
[]

Note:
No material properties are required in the dimensionless streamfunction formulation

6.1.4 Kernels
Four kernels are required for a dimensional model: NumbatTimeDerivative, NumbatDiffusion,
NumbatConvection, and NumbatDarcy.
[ Kernels ]

[./ time]
type = NumbatTimeDerivative
variable = concentration

[../]
[./ diffusion ]

type = NumbatDiffusion
variable = concentration

[../]
[./ convection ]

type = NumbatConvection
variable = concentration
pressure = pressure

[../]
[./ darcy]
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type = NumbatDarcy
variable = pressure
concentration = concentration

[../]
[]

For the dimensionless streamfunction formulation, four kernels are required for a 2D model: a
NumbatDarcySF kernel, a NumbatDiffusionSF kernel, a NumbatConvectionSF kernel, and a
TimeDerivative kernel.
[ Kernels ]

[./ Darcy]
type = NumbatDarcySF
variable = streamfunction
concentration = concentration

[../]
[./ Convection ]

type = NumbatConvectionSF
variable = concentration
streamfunction = streamfunction

[../]
[./ Diffusion ]

type = NumbatDiffusionSF
variable = concentration

[../]
[./ TimeDerivative ]

type = TimeDerivative
variable = concentration

[../]
[]

For 3D models, an additional NumbatDarcySF kernel is required for the additional streamfunction
variable. An example of the kernels block for a 3D isotropic model is
[ Kernels ]

[./ Darcy_x ]
type = NumbatDarcySF
variable = streamfunctionx
concentration = concentration
component = x

[../]
[./ Darcy_y ]

type = NumbatDarcySF
variable = streamfunctiony
concentration = concentration
component = y

[../]
[./ Convection ]

type = NumbatConvectionSF
variable = concentration
streamfunction = 'streamfunctionx streamfunctiony '

[../]
[./ Diffusion ]

type = NumbatDiffusionSF
variable = concentration

[../]
[./ TimeDerivative ]
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type = TimeDerivative
variable = concentration

[../]
[]

In the 3D case, it is important to note that the NumbatDarcySF kernel must specify the com-
ponent that it applies to, and that the streamfunction keyword in the NumbatConvectionSF
kernel must contain both streamfunction variables ordered by the x component then the y
component.

Note:
For the streamfunction formulation, a TimeDerivative kernel is used, rather than a Num-
batTimeDerivative kernel, as porosity has been scaled out of the problem.

6.1.5 Boundary conditions
Appropriate boundary conditions must be prescribed. Typically, these will be constant concen-
tration at the top of the model domain, periodic boundary conditions on the lateral sides (to
mimic an infinite model), and no-flow boundary conditions at the top and bottom surfaces.
In the 2D dimensional formulation, this can be achieved using the following input block:
[BCs]

[./ conctop ]
type = PresetBC
variable = concentration
boundary = top
value = 0.049306

[../]
[./ Periodic ]

[./x]
variable = concentration
auto_direction = x

[../]
[../]

[]

while in 3D
[BCs]

[./ conctop ]
type = PresetBC
variable = concentration
boundary = front
value = 0.049306

[../]
[./ Periodic ]

[./x]
variable = concentration
auto_direction = 'x y'

[../]
[../]

[]

In this case, the conctop boundary condition fixes the value of concentration at the top
boundary, while the Periodic boundary condition enforces periodicity of concentration along
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the boundaries in the directions specified in the auto_direction parameter.
It is useful to note that a MOOSE GeneratedMesh provides descriptive names for the sides of
the model (top, bottom, left, right) which can be referenced in the input file.
For the dimensionless streamfunction formulation, no-flow boundary conditions are prescribed
on the top and bottom surfaces by holding the streamfunction variable constant (in this
case 0).
[BCs]

[./ conctop ]
type = DirichletBC
variable = concentration
boundary = top
value = 1.0

[../]
[./ streamfuntop ]

type = DirichletBC
variable = streamfunction
boundary = top
value = 0.0

[../]
[./ streamfunbottom ]

type = DirichletBC
variable = streamfunction
boundary = bottom
value = 0.0

[../]
[./ Periodic ]

[./x]
variable = 'concentration streamfunction '
auto_direction = x

[../]
[../]

[]

6.1.6 Executioner
Each MOOSE simulation must use an Executioner, which provides parameters for the solve.
[ Executioner ]

type = Transient
l_max_its = 200
end_time = 3e5
solve_type = NEWTON
petsc_options = -ksp_snes_ew
petsc_options_iname = '-pc_type -sub_pc_type -ksp_atol '
petsc_options_value = 'bjacobi ilu 1e-12 '
nl_abs_tol = 1e -10
nl_max_its = 25
dtmax = 2e3
[./ TimeStepper ]

type = IterationAdaptiveDT
dt = 1

[../]
[]

Executioners are a standard MOOSE feature that are well documented on the MOOSE, so no
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further detail is provided here.
6.1.7 Preconditioning
A default preconditioning block is used that provides all Jacobian entries to aid convergence.
[ Preconditioning ]

[./ smp]
type = SMP
full = true

[../]
[]

This is a standard MOOSE feature that is documented on the MOOSE website, so no further
detail is provided here.
6.1.8 Outputs
To provide ouptut from the simulation, an Outputs block must be specified. An example is
[ Outputs ]

perf_graph = true
[./ exodus ]

type = Exodus
file_base = 2Dddc
execute_on = 'INITIAL TIMESTEP_END '

[../]
[./ csvoutput ]

type = CSV
file_base = 2Dddc
execute_on = 'INITIAL TIMESTEP_END '

[../]
[]

There are a large number of output options available in MOOSE, see the MOOSE website for
further details.

6.2 Action system
To avoid having to enter several of these input file blocks each time, and ensuring that the
correct parameters are provided to each object in the correct order, Numbat provides some
powerful actions that automatically add most of the required objects.
The NumbatAction adds all of the nonlinear variables, kernels, aux variables, aux kernels and
postprocessors typically required in a dimensional Numbat simulation.
This action is called in the input file simply as
[ Numbat ]

[./ Dimensional ]
[../]

[]

The use of this action is exactly equivalent to the following input file syntax
[ Variables ]

[./ concentration ]
initial_condition = 0

[../]
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[./ pressure ]
initial_condition = 1e6

[../]
[]

[ AuxVariables ]
[./u]

order = CONSTANT
family = MONOMIAL

[../]
[./v]

order = CONSTANT
family = MONOMIAL

[../]
[]

[ Kernels ]
[./ time]

type = NumbatTimeDerivative
variable = concentration

[../]
[./ diffusion ]

type = NumbatDiffusion
variable = concentration

[../]
[./ convection ]

type = NumbatConvection
variable = concentration
pressure = pressure

[../]
[./ darcy]

type = NumbatDarcy
variable = pressure
concentration = concentration

[../]
[]

[ AuxKernels ]
[./ uAux]

type = NumbatDarcyVelocity
pressure = pressure
variable = u
component = x

[../]
[./ vAux]

type = NumbatDarcyVelocity
pressure = pressure
variable = v
component = y

[../]
[]

[BCs]
[./ conctop ]

type = DirichletBC
variable = concentration
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boundary = top
value = 1.0

[../]
[./ Periodic ]

[./x]
variable = 'concentration pressure '
auto_direction = x

[../]
[../]

[]

[ Postprocessors ]
[./ boundary_flux ]

type = NumbatSideFlux
variable = concentration
boundary = top

[../]
[./ total_mass ]

type = NumbatTotalMass
variable = concentration

[../]
[]

A specific value for the saturated boundary concentration can optionally be provided
[ Numbat ]

[./ Dimensional ]
boundary_concentration = 0.05

[../]
[]

Similarly, the NumbatSFAction adds all of the nonlinear variables, kernels, aux variables, aux
kernels and postprocessors typically required in a dimensionless Numbat simulation.
This action is called in the input file simply as
[ Numbat ]

[./ Dimensionless ]
[../]

[]

The use of this action is exactly equivalent to the following input file syntax for a 2D simulation.
[ Variables ]

[./ concentration ]
order = FIRST
family = LAGRANGE
initial_condition = 0.0

[../]
[./ streamfunction ]

order = FIRST
family = LAGRANGE
initial_condition = 0.0

[../]
[]

[ AuxVariables ]
[./u]
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order = CONSTANT
family = MONOMIAL

[../]
[./v]

order = CONSTANT
family = MONOMIAL

[../]
[]

[ Kernels ]
[./ Darcy]

type = NumbatDarcySF
variable = streamfunction
concentration = concentration

[../]
[./ Convection ]

type = NumbatConvectionSF
variable = concentration
streamfunction = streamfunction

[../]
[./ Diffusion ]

type = NumbatDiffusionSF
variable = concentration

[../]
[./ TimeDerivative ]

type = TimeDerivative
variable = concentration

[../]
[]

[ AuxKernels ]
[./ uAux]

type = NumbatDarcyVelocitySF
variable = u
component = x
streamfunction = streamfunction

[../]
[./ vAux]

type = NumbatDarcyVelocitySF
variable = v
component = y
streamfunction = streamfunction

[../]
[]

[BCs]
[./ conctop ]

type = DirichletBC
variable = concentration
boundary = top
value = 1.0

[../]
[./ streamfuntop ]

type = DirichletBC
variable = streamfunction
boundary = top
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value = 0.0
[../]
[./ streamfunbottom ]

type = DirichletBC
variable = streamfunction
boundary = bottom
value = 0.0

[../]
[./ Periodic ]

[./x]
variable = 'concentration streamfunction '
auto_direction = x

[../]
[../]

[]

[ Postprocessors ]
[./ boundary_flux ]

type = NumbatSideFluxSF
variable = concentration
boundary = top

[../]
[./ total_mass ]

type = NumbatTotalMassSF
variable = concentration

[../]
[]

The use of these actions is recommended for all users, as they reduce the possibility of input
file errors.

6.3 Optional input
While the above required blocks will enable a Numbat simulation to run, there are a number
of optional input blocks that will improve the simulations are increase the amount of results
provided.
6.3.1 Mesh adaptivity
MOOSE features built-in mesh adaptivity that is extremely useful in Numbat simulations to
reduce computational expense. This can be included using:
[ Adaptivity ]

max_h_level = 1
initial_marker = boxmarker
initial_steps = 1
marker = errormarker
[./ Indicators ]

[./ gradjumpindicator ]
type = GradientJumpIndicator
variable = concentration

[../]
[../]
[./ Markers ]

[./ errormarker ]
type = ErrorToleranceMarker
refine = 0.05

| 24



indicator = gradjumpindicator
[../]
[./ boxmarker ]

type = BoxMarker
bottom_left = '0 0 -10'
top_right = '500 500 0'
inside = refine
outside = dont_mark

[../]
[../]

[]

For details about mesh adaptivity, see the MOOSE website.
6.3.2 Initial condition
To seed the instability, a random perturbation to the initial concentration can be prescribed
using the NumbatPerturbationIC initial condition.
[ICs]

[./ concentration ]
type = NumbatPerturbationIC
variable = concentration
amplitude = 0.1
seed = 1

[../]
[]

The NumbatPerturbationIC initial condition applies the diffusive concentration profile to the
nodes for (scaled) time t = 1,

cd(z, t = 1) = 1 + erf(z/2), (6.1)

for z < 0, where erf(z) is the error function.
A uniform random perturbation is then added to the diffusive concentration profile, where the
amplitude of the perturbation is specified by the input file value amplitude.
6.3.3 Postprocessors
The flux over the top boundary or the total mass of solute in the model is of particular interest
in many cases (especially convective mixing of CO2). These can be calculated at each time
step using the NumbatSideFlux and NumbatTotalMass Postprocessors.
[ Postprocessors ]

[./ boundaryfluxint ]
type = NumbatSideFlux
variable = concentration
boundary = top

[../]
[./ mass]

type = NumbatTotalMass
variable = concentration

[../]
[]
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Versions of these Postprocessors for the dimensionless streamfunction formulation are also
provided, see NumbatSideFluxSF and NumbatTotalMassSF for details.
Numbat also provides a simple Postprocessor to calculate the Rayleigh number for dimensional
simulations, see NumbatRayleighNumber for details.
6.3.4 AuxKernels
The velocity components in the x and y directions (in 2D), and x, y, and z directions in 3D
can be calculated using the auxiliary system. These velocity components are calculated using
the streamfunction(s), see the governing equations for details.
In the 2D case, two auxiliary variables, u and w, can be defined for the horizontal and vertical
velocity components, respectively.

Note:
Importantly, these auxiliary variables must have monomial shape functions (these are
referred to as elemental variables, as the value is constant over each mesh element). This
restriction is due to fact that the gradient of variables is undefined for nodal auxiliary
variables (for example, those using linear Lagrange shape functions).

An example of the input syntax for the 2D case is
[ AuxVariables ]

[./u]
order = CONSTANT
family = MONOMIAL

[../]
[./w]

order = CONSTANT
family = MONOMIAL

[../]
[]

For the 3D case, there is an additional horizontal velocity component (v), so the input syntax is
[ AuxVariables ]

[./u]
order = CONSTANT
family = MONOMIAL

[../]
[./v]

order = CONSTANT
family = MONOMIAL

[../]
[./w]

order = CONSTANT
family = MONOMIAL

[../]
[]

The velocity components are calculated by NumbatDarcyVelocity AuxKernels (or NumbatDar-
cyVelocitySF AuxKernels for the dimensionless streamfunction formulation). Each velocity
component is computed by an AuxKernel.
For the 2D case, two AuxKernels are required:
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[ AuxKernels ]
[./ uAux]

type = NumbatDarcyVelocitySF
variable = u
component = x
streamfunction = streamfunction

[../]
[./ wAux]

type = NumbatDarcyVelocitySF
variable = w
component = y
streamfunction = streamfunction

[../]
[]

while for 3D, three AuxKernels are necessary:
[ AuxKernels ]

[./ uAux]
type = NumbatDarcyVelocitySF
variable = u
component = x
streamfunction = 'streamfunctionx streamfunctiony '

[../]
[./ vAux]

type = NumbatDarcyVelocitySF
variable = v
component = y
streamfunction = 'streamfunctionx streamfunctiony '

[../]
[./ wAux]

type = NumbatDarcyVelocitySF
variable = w
component = z
streamfunction = 'streamfunctionx streamfunctiony '

[../]
[]

Note:
For the 3D case, both streamfunction variables must be given, in the correct order (eg. x
then y)
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7 Running the Numbat application
7.1 Commandline
Most often, Numbat will be run from the commandline using

./numbat-opt -i input.i

Numbat (and all MOOSE applications) have a large number of commandline options available
to the user. The complete list can be viewed using the --help option

./numbat-opt --help

7.1.1 Recovering
If you output checkpoint files (using checkpoint = true in your Outputs block) then the
--recover option will allow you to continue a solve that died in the middle of the solve,
perhaps because the job ran out of time on the cluster you were using.
We recommend that all input files for large Numbat simulations enable checkpointing. This
can be enabled using
[ Outputs ]

perf_graph = true
[./ csvoutput ]

type = CSV
file_base = 2DSF
execute_on = 'INITIAL TIMESTEP_END '

[../]
[./ checkpoint ]

type = Checkpoint
num_files = 2

[../]
[]

For all of the options available for checkpointing, see the MOOSE documentation.
If a long-running simulation does fail to complete, it can be recovered by running

./numbat-opt --recover checkpoint_dir/XXXX -i input.i

where checkpoint_dir is the subdirectory where the checkpoint files are saved, and XXXX is
the number of one of the available checkpoint files.
7.1.2 Overriding parameters
MOOSE provides a handy feature where any parameter in the input file can be overridden from
the commandline, making it possible to script studies where only parameters are changed from
simulation to simulation.
For example, assume that the anisotropy gamma of the porous medium is set as 1 in the input
file

[Kernels]
[./Darcy]
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type = NumbatDarcySF
variable = streamfunction
concentration = concentration
gamma = 1

[../]
[]

This value can be changed to 0.5 by running Numbat with the following commandline option

./numbat-opt -i input.i Kernels/Darcy/gamma=0.5

7.2 Graphical user interface (Peacock)
MOOSE provides a graphical user interface, Peacock, which can be used to both run simulations
and create input files. Starting Peacock from within the base Numbat directory allows Peacock
to extract the Numbat syntax, so that all Numbat objects are available in the menus.
Peacock can be run using

$MOOSE_DIR/python/peacock/peacock -i input.i

where $MOOSE_DIR is the directory where the MOOSE repository is located.

Note:
It is not recommended to use Peacock to run very large models (e.g. three dimensional
simulations) that require lots of memory.
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8 Two-dimensional examples
Complete input files for 2D models using the dimensional and dimensionless streamfunction
formulations are provided, for both isotropic and anisotropic porous media. These examples
are provided in the Numbat examples folder.

8.1 Isotropic models
The first 2D examples are for an isotropic porous medium (γ = 1).
8.1.1 Input file
The complete input file for this problem is
# 2D density - driven convective mixing
# The dimensional Numbat action is used to add all variables , kernels

etc.
# Instability is seeded by small perturbation to porosity .
# A coarse grid and time stepping used to allow this model to run in ~

15 minutes

[Mesh]
type = NumbatBiasedMesh
dim = 2
nx = 150
ny = 50
ymax = 0.5
refined_edge = top
refined_resolution = 0.001

[]

[ Numbat ]
[./ Dimensional ]

concentration_scaling = 1e4
boundary_concentration = 0.049306
periodic_bcs = true

[../]
[]

[ AuxVariables ]
[./ noise]

family = MONOMIAL
order = CONSTANT

[../]
[]

[ICs]
[./ noise]

type = RandomIC
variable = noise
max = 0.003
min = -0.003

[../]
[./ pressure ]

type = ConstantIC
variable = pressure
value = 10e6
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[../]
[]

[ Materials ]
[./ porosity ]

type = NumbatPorosity
porosity = 0.3
noise = noise

[../]
[./ permeability ]

type = NumbatPermeability
permeability = '1e -11 0 0 0 1e -11 0 0 0 1e-11'

[../]
[./ diffusivity ]

type = NumbatDiffusivity
diffusivity = 2e-9

[../]
[./ density ]

type = NumbatDensity
concentration = concentration
zero_density = 994.56
delta_density = 10.45
saturated_concentration = 0.049306

[../]
[./ viscosity ]

type = NumbatViscosity
viscosity = 0.5947e-3

[../]
[]

[ Preconditioning ]
[./ smp]

type = SMP
full = true

[../]
[]

[ Functions ]
[./ timesteps ]

type = PiecewiseConstant
x = '0 100 500 1e3 1e4 2e5 '
y = '10 50 100 500 1e3 1e3 '

[../]
[]

[ Executioner ]
type = Transient
l_max_its = 100
end_time = 2e5
solve_type = NEWTON
petsc_options = -ksp_snes_ew
petsc_options_iname = '-pc_type -sub_pc_type -ksp_atol '
petsc_options_value = 'asm ilu 1e-12 '
nl_abs_tol = 1e-8
[./ TimeStepper ]

type = FunctionDT
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function = timesteps
[../]

[]

[ Outputs ]
perf_graph = true
[./ exodus ]

type = Exodus
file_base = 2Dddc
execute_on = 'INITIAL TIMESTEP_END '

[../]
[./ csvoutput ]

type = CSV
file_base = 2Dddc
execute_on = 'INITIAL TIMESTEP_END '

[../]
[]

8.1.2 Running the example
This example can be run on the commandline using

numbat-opt -i 2Dddc.i

Alternatively, this file can be run using the Peacock gui provided by MOOSE using

peacock -i 2Dddc.i

in the directory where the input file 2Dddc.i resides.
8.1.3 Results
This 2D example should take only a few minutes to run to completion, producing a concentration
profile similar to that presented in Figure 8.1, where several downwelling plumes of high
concentration can be observed after 3528 s:

Figure 8.1: 2D concentration profile (t = 3528 s)

The flux per unit width over the top boundary is of particular interest in many cases (especially
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convective mixing of CO2). This is calculated using the boundaryfluxint postprocessor in the
input file, and presented in 8.2.

Figure 8.2: 2D flux across the top boundary

Initially, the flux is purely diffusive, and scales as 1/
√

(πt), where t is time (shown as the
dashed red line). After some time, the convective instability becomes sufficiently strong, at
which point the flux across the top boundary rapidly increases (at a time of approximately
2000 seconds).

8.2 Anisotropic models
The second 2D example is for an anisotropic porous medium with γ = 0.75 (ie., the vertical
permeability is three quarters of the horizontal permeability).
8.2.1 Input file
# 2D density - driven convective mixing with permeability anisotropy gamma

= 0.5
# The dimensional Numbat action is used to add all variables , kernels

etc.
# Instability is seeded by small perturbation to porosity .
# A coarse grid and time stepping used to allow this model to run in ~

15 minutes

[Mesh]
type = NumbatBiasedMesh
dim = 2
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nx = 150
ny = 50
ymax = 0.5
refined_edge = top
refined_resolution = 0.001

[]

[ Numbat ]
[./ Dimensional ]

concentration_scaling = 1e4
boundary_concentration = 0.049306
periodic_bcs = true

[../]
[]

[ AuxVariables ]
[./ noise]

family = MONOMIAL
order = CONSTANT

[../]
[]

[ICs]
[./ noise]

type = RandomIC
variable = noise
max = 0.003
min = -0.003

[../]
[./ pressure ]

type = ConstantIC
variable = pressure
value = 10e6

[../]
[]

[ Materials ]
[./ porosity ]

type = NumbatPorosity
porosity = 0.3
noise = noise

[../]
[./ permeability ]

type = NumbatPermeability
permeability = '1e -11 0 0 0 5e -12 0 0 0 1e-11'

[../]
[./ diffusivity ]

type = NumbatDiffusivity
diffusivity = 2e-9

[../]
[./ density ]

type = NumbatDensity
concentration = concentration
zero_density = 994.56
delta_density = 10.45
saturated_concentration = 0.049306
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[../]
[./ viscosity ]

type = NumbatViscosity
viscosity = 0.5947e-3

[../]
[]

[ Preconditioning ]
[./ smp]

type = SMP
full = true

[../]
[]

[ Functions ]
[./ timesteps ]

type = PiecewiseConstant
x = '0 100 500 1e3 1e4 4e5 '
y = '10 50 100 500 1e3 2e3 '

[../]
[]

[ Executioner ]
type = Transient
l_max_its = 100
end_time = 4e5
solve_type = NEWTON
petsc_options = -ksp_snes_ew
petsc_options_iname = '-pc_type -sub_pc_type -ksp_atol '
petsc_options_value = 'asm ilu 1e-12 '
nl_abs_tol = 1e-8
[./ TimeStepper ]

type = FunctionDT
function = timesteps

[../]
[]

[ Outputs ]
perf_graph = true
[./ exodus ]

type = Exodus
file_base = 2Dddc
execute_on = 'INITIAL TIMESTEP_END '

[../]
[./ csvoutput ]

type = CSV
file_base = 2Dddc
execute_on = 'INITIAL TIMESTEP_END '

[../]
[]

Note that the permeability anisotropy is introduced in the kernels using the gamma and
anisotropic_tensor input parameters.
8.2.2 Running the example
This example can be run on the commandline using
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numbat-opt -i 2Dddc_anisotropic.i

Alternatively, this file can be run using the Peacock gui provided by MOOSE using

peacock -i 2Dddc_anisotropic.i

in the directory where the input file 2Dddc_anisotropic.i resides.
8.2.3 Results
This 2D example should take only a few minutes to run to completion, producing a concentration
profile similar to that presented in Figure 8.3, where several downwelling plumes of high
concentration can be observed after 5000 s:

Figure 8.3: 2D concentration profile for γ = 0.75 (t = 5000 s)

In comparison to the isotropic example (with γ = 1) presented in Figure 8.1, we note that the
concentration profile in the anisotropic example has only reached a similar depth after 5000
s (compared to 3528 s). The effect of the reduced vertical permeability in the anisotropic
example slows the convective transport.
This observation can be quantified by comparing the flux per unit width over the top boundary
of both examples, see Figure 8.4.
The inclusion of permeability anisotropy delays the onset of convection in comparison to the
isotropic example, from a time of approximately 2000 seconds in the isotropic example to
approximately 3500 seconds in the anisotropic example.
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Figure 8.4: Comparison of the 2D flux across the top boundary
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9 Three-dimensional examples
Complete input files for 2D models using the dimensional and dimensionless streamfunction
formulations are provided, for both isotropic and anisotropic porous media. These examples
are provided in the Numbat examples folder.

9.1 Isotropic models
The first examples are for an isotropic porous medium (γ = 1).
9.1.1 Input file
The complete input file for this problem is
# 3D density - driven convective mixing . Instability is seeded by small

perturbation
# to porosity . Don 't try this on a laptop !

[Mesh]
type = NumbatBiasedMesh
dim = 3
zmax = 1.5
nx = 20
ny = 20
nz = 500
refined_edge = front
refined_resolution = 0.001

[]

[ Numbat ]
[./ Dimensional ]

concentration_scaling = 1e6
boundary_concentration = 0.049306
periodic_bcs = true

[../]
[]

[ AuxVariables ]
[./ noise]

family = MONOMIAL
order = CONSTANT

[../]
[]

[ICs]
[./ noise]

type = RandomIC
variable = noise
max = 0.003
min = -0.003

[../]
[./ pressure ]

type = ConstantIC
variable = pressure
value = 1e6

[../]
[]
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[ Materials ]
[./ porosity ]

type = NumbatPorosity
porosity = 0.3
noise = noise

[../]
[./ permeability ]

type = NumbatPermeability
permeability = '1e -11 0 0 0 1e -11 0 0 0 1e-11'

[../]
[./ diffusivity ]

type = NumbatDiffusivity
diffusivity = 2e-9

[../]
[./ density ]

type = NumbatDensity
concentration = concentration
zero_density = 995
delta_density = 10.5
saturated_concentration = 0.049306

[../]
[./ viscosity ]

type = NumbatViscosity
viscosity = 6e-4

[../]
[]

[ Preconditioning ]
[./ smp]

type = SMP
full = true

[../]
[]

[ Executioner ]
type = Transient
l_max_its = 200
end_time = 3e5
solve_type = NEWTON
petsc_options = -ksp_snes_ew
petsc_options_iname = '-pc_type -sub_pc_type -ksp_atol -pc_asm_overlap

'
petsc_options_value = 'asm ilu 1e -12 4'
nl_abs_tol = 1e -10
nl_max_its = 25
dtmax = 2e3
[./ TimeStepper ]

type = IterationAdaptiveDT
dt = 1

[../]
[]

[ Outputs ]
perf_graph = true
[./ exodus ]
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type = Exodus
file_base = 3Dddc
execute_on = 'INITIAL TIMESTEP_END '

[../]
[./ csvoutput ]

type = CSV
file_base = 3Dddc
execute_on = 'INITIAL TIMESTEP_END '

[../]
[]

9.1.2 Running the example
Note:
This example should not be run on a laptop or workstation due to the large computational
requirements. Do not run this using the Peacock gui provided by MOOSE.

Examples of the total run times for this problem on a cluster are over 27 hours for a single
processor down to only 30 minutes using 100 processors in parallel.
9.1.3 Results
This 3D example should produce a concentration profile similar to that presented in Figure 9.1,
where several downwelling plumes of high concentration can be observed:

Figure 9.1: 3D concentration profile

Note that due to the random perturbation applied to the initial concentration profile, the
geometry of the concentration profile obtained will differ from run to run.
The flux over the top surface is of particular interest in many cases (especially convective
mixing of CO2). This is calculated in this example file using the NumbatSideFlux in the input
file, and presented in Figure 9.2.
Initially, the flux is purely diffusive, and scales as 1/

√
(πt), where t is time (shown as the
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Figure 9.2: 3D flux across the top boundary

dashed green line). After some time, the convective instability becomes sufficiently strong, at
which point the flux across the top boundary rapidly increases (at a time of approximately
1,700 seconds). Also shown for comparison is the flux for the 2D example. It is apparent that
the 3D model leads in a slower onset of convection (the time where the flux first increases
from the diffusive rate).

9.2 Large model
Increasing the size of the mesh enables more of the flow regimes to be modelled (at the cost
of increased computational expense). Consider a dimensionless model with Rayleigh number
Ra = 5000. Lateral model dimensions are chosen so that approximately twenty fingers in the
lateral directions are present at the onset of convection.
A suitable fully unstructured mesh for this model that is sufficiently refined near the top
boundary with increasing element size with depth to minimise the number of elements can be
constructed in an external meshing code. In this example, the open-source mesh generator
Gmsh is used. The following geometry file describes the dimensions of the model and the
target resolutions.
// Gmsh geometry file for a 3D mesh corresponding to
// Ra = 5000 ( dimensionless model).
// The mesh is refined at the top boundary with element
// size increasing with depth.
//
// This geometry file can be converted to a mesh using
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// gmsh -3 Ra5000 .geo

// Mesh width in each dimension
xmax = 2000;
ymax = 2000;
zmax = 5000;

// Resolution at the top and bottom
lctop = 10;
lcbot = 200;

// Vertices of mesh
Point (1) = {0, 0, 0, lcbot };
Point (2) = {xmax , 0, 0, lcbot };
Point (3) = {0, ymax , 0, lcbot };
Point (4) = {xmax , ymax , 0, lcbot };
Point (5) = {xmax , ymax , zmax , lctop };
Point (6) = {xmax , 0, zmax , lctop };
Point (7) = {0, ymax , zmax , lctop };
Point (8) = {0, 0, zmax , lctop };

// Lines connecting vertices
Line (1) = {3, 7};
Line (2) = {7, 5};
Line (3) = {5, 4};
Line (4) = {4, 3};
Line (5) = {3, 1};
Line (6) = {2, 4};
Line (7) = {2, 6};
Line (8) = {6, 8};
Line (9) = {8, 1};
Line (10) = {1, 2};
Line (11) = {8, 7};
Line (12) = {6, 5};

// Surfaces defined by lines
Line Loop (13) = {7, 8, 9, 10};
Plane Surface (14) = {13};
Line Loop (15) = {6, 4, 5, 10};
Plane Surface (16) = {15};
Line Loop (17) = {3, 4, 1, 2};
Plane Surface (18) = {17};
Line Loop (19) = {12, -2, -11, -8};
Plane Surface (20) = {19};
Line Loop (21) = {7, 12, 3, -6};
Plane Surface (22) = {21};
Line Loop (23) = {9, -5, 1, -11};
Plane Surface (24) = {23};
Surface Loop (25) = {14, 22, 20, 18, 16, 24};

// Volume defined by surfaces
Volume (26) = {25};

// Make the sides suitable for periodic boundary conditions
Periodic Surface {18} = {14} Translate {0, ymax , 0};
Periodic Surface {22} = {24} Translate {xmax , 0, 0};

| 42



// Name the faces for easy application of boundary conditions
Physical Surface (" top ") = {20};
Physical Surface (" bottom ") = {16};
Physical Surface (" front ") = {14};
Physical Surface (" back ") = {18};
Physical Surface (" left ") = {24};
Physical Surface (" right ") = {22};
Physical Volume ("0") = {26};

This mesh geometry file can be used to generate a mesh using Gmsh, either through its
graphical user interface, or alternatively, on the commandline

gmsh -3 Ra5000.geo

which results in a mesh file with approximately 8.4 million tetrahedral elements.
9.2.1 Input file
The complete input file for this problem is
# Density - driven convective mixing in a 3D model using the

streamfunction
# formulation for Ra = 5000
#
# Uses an unstructured mesh generated by Gmsh
# To generate the mesh , run 'gmsh -3 Ra5000 .geo '
#
# Note: this mesh has approximately 8.4 million elements and takes about
# 8 hours to run using 200 processors

[Mesh]
type = FileMesh
file = Ra5000 .e

[]

[ Numbat ]
[./ Dimensionless ]
[../]

[]

[ICs]
[./ concentration ]

type = NumbatPerturbationIC
variable = concentration
amplitude = 0.1
seed = 1

[../]
[./ streamfunctionx ]

type = ConstantIC
variable = streamfunction_x
value = 0.0

[../]
[./ streamfunctiony ]

type = ConstantIC
variable = streamfunction_y
value = 0.0
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[../]
[]

[ Functions ]
[./ timesteps ]

type = PiecewiseConstant
x = '0 10 500 1e3 1e4 6e4 '
y = '9 10 50 100 200 200'

[../]
[]

[ Executioner ]
type = Transient
end_time = 6e4
start_time = 1
solve_type = NEWTON
petsc_options = -snes_ksp_ew
petsc_options_iname = '-ksp_type -pc_type -pc_asm_overlap -sub_pc_type

-pc_factor_levels -ksp_atol '
petsc_options_value = 'gmres asm 10 ilu 4 1e-12'
nl_abs_tol = 1e-9
l_max_its = 200
[./ TimeStepper ]

type = FunctionDT
function = timesteps

[../]
[]

[ Preconditioning ]
[./ smp]

type = SMP
full = true

[../]
[]

[ Outputs ]
perf_graph = true
[./ exodus ]

type = Exodus
execute_on = 'INITIAL TIMESTEP_END '
interval = 4

[../]
[./ csvoutput ]

type = CSV
execute_on = 'INITIAL TIMESTEP_END '

[../]
[./ checkpoint ]

type = Checkpoint
num_files = 2
interval = 10

[../]
[]

An example of the evolution of the convective fingers in this model are presented in Figure
9.3 and Figure 9.4 for an isotropic model. The concentration profile just after the onset of
convection is shown in Figure 9.3 for a dimensionless time t = 1400. As the isosurface shows,

| 44



there are a large number of small fingers at this stage. As time increases, these small structures
merge, forming larger fingers in a process that continues as time proceeds, until only a few large
fingers are present, see Figure 9.4. This merging behaviour is very complicated and difficult to
characterise in any quantitative manner
Many interesting observations can be made from large-scale 3D models. For example, the
temporal evolution of the fingers shown in Figure 9.3 and Figure 9.4 can also be examined
through a horizontal slice through the model, see Figure 9.5. In this example, a horizontal slice
is taken at a dimensionless distance of 100 from the top surface (where the CO2 concentration
is 1). As the fingers approach this depth, they are initially observed as circular regions of higher
concentration, cf Figure 9.5 (a) and (b), where we can see that the fingers have just reached
this depth at dimensionless time 1000. As time increases, the complexity of the fingering
process can be observed, with merging of adjacent fingers and growth observed. Like Pau et al.
(2010) and Fu et al. (2013) we observe that the fingers arrange themselves into polygonal
structures with thin profiles surrounded by large regions of unsaturated fluid, see Figure 9.5
(d), (e) and (f).

| 45



Figure 9.3: Evolution of convective mixing in 3D. Time is dimensionless.
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Figure 9.4: Evolution of convective mixing in 3D (continued). Time is dimensionless.
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Figure 9.5: Horizontal slice at dimensionless depth 10 showing the evolution of the convective fingers
in 3D. Time increasing from (a) to (f).
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10 Contributing
Numbat is an open-source application built using the MOOSE framework. It is developed on
GitHub, and is written using C++. We welcome new contributions to the code base, which
can be submitted using the workflow outlined below.
This guide is based on the MOOSE contributing guide, where you can find lots of information
about the code standards and workflow.

10.1 Fork numbat
The first step is to create your own fork of Numbat where you can commit your set of changes.

• Navigate to https://github.com/cpgr/numbat

• Click the “Fork” button in the upper right corner
• Clone your fork to your local machine (replace “username” with your GitHub username).

+Note:+ We recommend that you use SSH URLs instead of HTTPS. Generally you will have
fewer problems with firewalls and authentication this way. It does however require an additional
step of setting up keys. Please follow the instructions provided by Github to setup your SSH
keys.

git clone git@github.com:username/numbat.git

10.2 Add the upstream Remote:
Add the main Numbat repository as a remote named “upstream”:

cd moose
git remote add upstream git@github.com:cpgr/numbat.git

10.3 Make Modifications
Create a branch for your work:

git checkout -b branch_name upstream/master

Make your modifications and commit them to a branch (be sure to reference an issue number
in your commit messages).

git add your_file.h your_file.C
git commit -m "A message about the commit

closes #12345"

See git add and git commit for more assistance on these commands.
Before contributing your changes you should rebase them on top of the current set of patches
in the master branch in the main Numbat repository:
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git fetch upstream
git rebase upstream/master

10.4 Push Modifications Back to GitHub
Push your branch back into your fork on GitHub:

git push origin branch_name

10.5 Create a Pull Request
GitHub uses Pull Requests (PRs) to allow you to submit changes stored in your Fork back to
the main Numbat repository. If you are generally interested in how PRs work, see the official
GitHub documentation.
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